452

Letters

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 38. NO. 4, APRIL 1990

Comments on “Refraction at a Curved Dielectric Interface:
Geometrical Optics Solution”

ADEL A. SALEEB

In the above paper! the authors solved the problem of trans-
mission of a spherical or plane wave through an arbitrary curved
dielectric interface. We use the same notation U’ and U’ for the
incident and transmitted fields respectively, where

E
U= { H for parallel polarization.

for perpendicular polarization

At point 2 in the second medium (Fig. 1) the fields are given by
U'(2) = ( DF)Te /*2"U'(1). (1)

Here T is the Fresnel transmission coefficient for a planar
interface, and (DF) is the divergence factor of the transmitted
ray pencil at point 2 in reference to point 1. This factor describes
the cross-sectional variation of a ray pencil as it propagates in the
transmitted region; it is given by

1 1

F= JT+b/R, JTTb/R, @)

R, and R, are the two principal radii of curvature of the
transmitted wave front passing through point 1.

Now consider the surface shown in Fig. 2, which is a hyper-
boloidal surface of revolution with a point source at the focus 0.
This surface converts the incident spherical wave front into a
planar wave front [1]. Therefore, the transmitted wave front has
principal radii of curvature R, =R, =00, and DF becomes
unity. This can also be shown to be true by calculating DF
through the procedure described in the paper in question. Ac-
cording to (1) above the transmitted fields become

U'(2) = Te *2yi(1) (3)

which is true only for an infinite planar interface.

The actual reason behind this contradiction is that the authors
of the paper in question considered only variation of the cross-
sectional area of a pencil of rays as it propagates in the second
medium but they neglected the sudden change in the cross-
sectional area caused by refraction at the interface. To take this
effect into account, (DF) must be modified as follows:

(DF) = (DF),-(DF),. (4)

(DF), is given by (2) above; (DF), is derived below. Referring
to Fig. 3, the power radiated by the source at O within the solid
angle formed by rotating the planar angle df around the z axis is
given by

2aP(0)sin6 df
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Fig. 1

Refraction at a curved dielectric interface.
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Fig 3 Geometry for calculating (DF),

where P(8) is the radiated power intensity (power per unit solid
angle). According to the principle of the conservation of energy,
this power will be contained within the solid angle formed by
rotating the planar angle 46’ through 360° around the z axis.
Thus,

27P(0)sin§d6 = 27P'(8') sin’ d6’

sinf dé

P'(8) =P8
(¢) ( )sm0’ 46’

where P’(8") is the radiation intensity after refraction. From Fig,
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Fig 4. Concave spherical surface.

3 we can obtain the following relations:

0=0"+6 -4

y=90°+60-6
dx

=tan”!—
dz

rsinf = r'sin§’
sin, = nsing,  (Snell’s law).

Thus,

0'=90°+4/+sin1[%cos(0—¢)] (5)

where # is the ratio of the refractive index of medium 2 to that of
medium 1.

The radiation densities (power radiated per unit area) S(8)
and 5’(0") before and after refraction, respectively, are related to
radiation intensities through

S(8) =r2P(0)
S(6") =r?P'(8").
Thus,
s(0) r? sinf do
S(8) r* sinb’ do’’

The term (DF), is the ratio of the electric field U’(1) (just after
refraction) to U'(1) (just before refraction). This ratio is given by

5'(6%)
s(0)

U@ _
Uy

(DF)2=

or

(DF)2=( sinf )3/2(5_;)1/2 ©

The hyperboloidal surface of Fig. 2 is a special case where the
angle 8’ is equal to zero because of total collimation of the
refracted rays and the term (DF), can be shown to be

(ncosf —1)*?
F*(n—1)’(n~-cos8)*’

If the source is located at the center of a concave spherical
surface as shown in Fig. 4, no refraction takes place because the
rays are incident normally on the surface. Therefore the term
(DF), becomes unity. For surfaces other than spherical (Fig. 4)
or hyperboloidal (Fig. 2) both (DF), and (DF), have values
other than unity.

sind’

(DF), (7)
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Comments on “Improved Calibration and
Measurement of the Scattering Parameters
of Microwave Integrated Circuits”

ROGER MARKS

The above paper' proposes “generalized TRL” as an alterna-
tive to the TRL and LRL calibration methods. The contributions
of the work, according to the authors, are “the reformulation in
terms of S parameters and the removal of the requirement to
specify a line length.” In fact, it appears that only the formula-
tion, not the method itself, is novel.

The original TRL method [1] utilizes a zero-length through
connection. A more general calibration scheme, coined LRI [2],
[3], replaces the through with a transmission line. The first stage
of LRL is identical to TRL; the shorter line continues to be
described mathematically as a zero-length through. As clearly
pointed out by Hoer and Engen [2], [3], this results in calibration
at a pair of “mating” references planes which coincide with the
center of the short line. The second stage of LRL entails the
movement of the reference planes back to the physical ports. It is
only the movement of the reference planes that requires knowl-
edge of the line lengths.

The current proposal is apparently just the first stage of LRL.
As such, it avoids the need for line lengths solely by leaving the
references planes in the center of the short line. This is dernon-
strated by the equivalence of the S parameters of the proposed
method (equations (28)-(31) in the paper in question) with the
analogous cascade coefficients of LRL (equations (1)-(6) of [2]
or [3]). The proposed calibration scheme is not an “improved” or
“generalized” form of TRL except to the extent that LRL is itself
a generalization of TRL.

Furthermore, the authors’ claim of a new method is unsup-
ported by their experimental evidence, which offers only a com-
parison between their calibration and an uncalibrated test fixture.

Reply? by R. R. Pantoja, M. J. Howes, J. R. Richardson, and R. D.
Pollard?®

The comments raise four specific points which require some
explanation in order to ensure proper understanding not only of
what is described in our paper but also of the whole family of
calibration procedures under the increasingly common TRL clas-
sification. First we must correct a misprint in our paper. In the
first paragraph of Section III-A, the symbol A/ should be /, the
length of the shorter line.

1) It must be emphasized that what is achieved in our paper is
an S-parameter formulation of the TRL /LRL algorithm and a
specific application to MIC characterization, neither of which has
previously been presented in the literature.

2) In the context of the type of measurement discussed, the
main issue is to locate suitably the calibration reference planes
for measurement of a MIC structure while retaining the freedom
of choice for lengths of both line standards and, consequently,
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