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Letters

Comments on” Refraction at a Curved Dielectric Interface

Geometrical Optics Solution”

ADEL A. SALEEB

In the above paperl the authors solved the problem of trans-

mission of a spherical or plane wave through an arbitrary curved

dielectric interface. We use the same notation U’ and U’ for the

incident and transmitted fields respectively, where

{

E for perpendicular polarization
u= ~

for parallel polarization.

At point 2 in the second medium (Fig. 1) the fields are given by

U’(2) = (DF)Te-J~’hU’(l). (1)

Here T is the Fresnel transmission coefficient for a planar

interface, and ( DF ) is the divergence factor of the transmitted

ray pencil at point 2 in reference to point 1. This factor describes

the cross-sectional variation of a ray pencil as it propagates in the

transmitted region; it is given by

‘F=&&” (2)

RI and R ~ are the two principal radii of curvature of the

transmitted wave front passing through point 1.

Now consider the surface shown in Fig. 2, which is a hyper-

boloidal surface of revolution with a point source at the focus O.

This surface converts the incident spherical wave front into a

planar wave front [1]. Therefore, the transmitted wave front has

principal radii of curvature Rl = Rz = m, and DF becomes

unity. This can also be shown to be true by calculating DF

through the procedure described in the paper in question. Ac-

cording to (1) above the transmitted fields become

fjf(2) = Te-/~,f>U(l) (3)

which is true only for an infinite planar interface.

The actual reason behind this contradiction is that the authors

of the paper in question considered only variation of the cross-

sectional area of a pencil of rays as it propagates in the second

medium but they neglected the sudden change in the cross-

sectionaf area caused by refraction at the interface. To take this

effect into account, ( DF) must be modified as follows:

(DF)=(DF)l.(DF)2. (4)

( DF), is given by (2) above; ( DF)2 is derived below. Referring

to Fig. 3, the power radiated by the source at O within the solid

angle formed by rotating the planar angle dc9 around the z axis is

given by

2vP(0)sinOd0
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Fig. 1 Refraction at a curved dlelcctnc interface
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Fig 3 Geometry for calculating ( DF )2

where P( 19) is the radiated power intensity (power per unit solid

angle). According to the principle of the conservation of energy,

this power will be contained within the solid angle

rotating the planar angle dO’ through 3600 around

Thus,

formed by

the z axis.

2mP(0)sinOd0 =2mP’(0’)sinO’dO’

sin O ci6

P’(o’) .P(o)~z

where P’( O‘) is the radiation intensity after refraction. From Fig.
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3 we can obtain

Fig 4. Concave spherical surface.

the following relations:

o=e’+o,–q

+=90°+0-0,

=tm-l;

r.sint9 = r’sin f)’

sin O,=nsin9, (Snell’s law)

Thus,

O’=90°+*+sin-l
[

:Cos(e –+) 1 (5)

where n isthe ratio of therefractive index ofmedium2to fiat of

medium 1.

The radiation densities (power radiated per unit area) S(O)

and S’( 6‘) before and after refraction, respectively, are related to

radiation intensities through

S(6) =r2P(e)

Thus,

S’( d’) r’z sinO dO
.— _

s($) r~ sin O’ d8’ “

The term ( DF) ~ is the ratio of the electric field U’(l) (just after

refraction) to U’(1) (just before refraction). This ratio is given by

u’(1)

r

s(e))
(DF)2=~= ~

or

(DF)2=(%)3’2(:)”2(6)

The hyperboloidal surface of Fig. 2 is a special case where the

angle O‘ is equal to zero because of total collimation of the

refracted rays and the term ( DF)2 can be shown to be

(DF)2~
(ncosO -1)5/2

F2(n–l)2( n–cos O)l”2
(7)

If the source is located at the center of a concave spherical

surface as shown in Fig. 4, no refraction takes place because the

rays are incident ,normally on the surface. Therefore the term

(DF), becomes unity. For surfaces other than spherical (Fig. 4)

or hyperboloidal (Fig. 2) both ( DF)I and ( DF)2 have values

other than unity.
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Comments on “Improved Calibration and

Measurement of the Scattering Parameters

of Microwave Integrated Circuits”

ROGER MARKS

The above paperl proposes “generalized TRL” as an alterna-

tive to the TRL and LRL calibration methods. The contributions

of the work, according to the authors, are “the reformulaticm in

terms of S parameters and the removal of the requirement to

specify a line length.” In fact, it appears that only the formula-

tion, not the method itself, is novel.

The original TRL method [1] utilizes a zero-length through

connection. A more general calibration scheme, coined LRL [2],

[3], replaces the through with a transmission line. The first stage

of LRL is identical to TRL; the shorter line continues to be

described mathematically as a zero-length through. As clearly

pointed out by Hoer and Engen [2], [3], this results in calibration

at a pair of “mating” references planes which coincide with the

center of the short line. The seconcl stage of LRL entails the

movement of the reference planes back to the physical ports. It is

only the movement of the reference planes that requires knowl-

edge of the line lengths.

The current proposaf is apparently just the first stage of LRL.

As such, it avoids the need for line lengths solely by leaving the

references planes in the center of the short line. This is demons-

trated by the equivalence of the S parameters of the proposed

method (equations (28)–(31) in the paper in question) with the

analogous cascade coefficients of LR.L (equations (l)–(6) of [2]

or [3]). The proposed calibration scheme is not an “improvedl” or

“generalized form of TRL except to the extent that LRL is itself

a generalization of TRL.’

Furthermore, the authors’ claim of a new method is unsup-

ported by their experimental evidenc[:, which offers only a com-

parison between their calibration and an uncalibrated test fixture.

Repfy2 by R. R. Pantojq M. J. Howes, J. R. Richardioq and i?. D.

PolIard3

The comments raise four specific points which require some

explanation in order to ensure proper understanding not on] y of

what is described in our paper but also of the whole family of

calibration procedures under the increasingly common TRL clas-

sification. First we must correct a misprint in our paper. In~ the

first paragraph of Section III-A, the symbol Al should be II, the

length of the shorter line.

1) It mtist be emphasized that what is achieved in our paper is

an S-parameter formulation of the TRL/LRL algorithm and a

specific application to MIC characterization, neither of which, has

previously been presented in the literature.

2) In the context of the type of measurement discussed, the

main issue is to locate suitably the calibration reference planes

for measurement of a MIC structure while retaining the freedom

of choice for lengths of both line standards and, consequently,

Mamrscnpt recewed November 20, 1989.

The author is with the National Institute of Standards and Technology,

Mail Code 723.01, 325 Broadway, Boulder, CO 80303.

IEEE Log Number 8934081

lR. R. Pantoja, M. J Howes, J. R. Richardson, and R. D. Pollard, fEEE

Trans. Microwave Theory Tech., vol 37, pp. 1675 -16S0, Nov. 1989.

‘Manuscript received December 8, 1989.

3The authors are with the Department of Electrical and Electromc Engineer-

mg, University of Leeds, Leeds, LS2 9JT, U, K,

IEEE Log Number 8934030.

0018-9480/90/0400-0453$01.00 01990 IEEE


